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Breakdown of the Landauer bound for information erasure in the quantum regime
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A known aspect of the Clausius inequality is that an equilibrium system subjected to a squEgzi@gof
its entropy must release at least an amoui®|=T|dS of heat. This serves as a basis for the Landauer
principle, which puts a lower bouriiin 2 for the heat generated by erasure of one bit of information. Here we
show that in the world of quantum entanglement this law is broken. A quantum Brownian particle interacting
with its thermal bath can either generate less heat or abbsnrbheat during an analogous squeezing process,
due to entanglement with the bath. The effect exists even for weak but fixed coupling with the bath, provided
that temperature is low enough. This invalidates the Landauer bound in the quantum regime, and suggests that
quantum carriers of information can be more efficient than assumed so far.
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[. INTRODUCTION entanglement of the Brownian particle with the bath. There-
fore, even when the total system is in a pure state, the sub-
The laws of thermodynamics are at the basis of our unsystem(the Brownian particlgis in a mixed state. Thus its

derstanding of nature, so it is rather natural that they havstationary state cannot be given by equilibrii@ibbsian
applications beyond their original scope, e.g., in computingquantum thermodynamics, which would predict 6+ 0
and information processinfll—8]. The first connection be- that the subsystem goes to its ground state, the pure vacuum
tween information storage and thermodynamics was made bstate. The latter can only be approached for not too low
von Neumann in the 1950R2]. His speculation that each temperatures, given a fixed but weak coupling with the bath.
logical operation costs at least an amount of enéfdy2  |n general, a new situation arises, for which a generalized
was too pessimistic. Landauer pointed out that feV@fSib'@hermodynamical interpretation can be givé®,10] (for
“one-to-one” operations can be performed, in principle, analogous situations in glasses and related systems see Refs.
without dissipation; only irreversible operations “many-to- 111 12). In particular, the classical Clausius inequality is
one” operations, like erasure, require dissipation of energyn,jig. We stress that this situation is not at all exceptional,

?tl ag amount agtl)eisé eﬁﬁ?" to thle von Neudmann estimalg e jt appears even for a small but generic coupling pro-
n 2 per erased bit4,5]. This conclusion is a direct conse- vided that temperature is low enough.

guence of the Clausius inequality, which connects the chan'ge Our main result will show that when entropy of the par-

02222,; mcsn%li\é?enntp \r/(\?isc:r? ﬁtx\i/;itgnthsemccheaggee\?;rerl;t(;gpyhalg Sicle is decreased by external agents, namely, when a part of
ghanceyto observe, equilibrium éubstances typ?/callyyrelea%ge information carried by it is erased, the particle can absorb
i Sheat in clear contrast with the classical intuition. Later we

heat under isothermal compression of their entrGmyvol- ; . .
ume, which is the same for a good majority of classicaiShall apply this result to show that there is not anything

cases Rather recently the basis of the effect was finally putSimilar to Landauer bound at low temperatures. Thus in this
on the Clausius inequalit§8], and it was shown that the FeSpect quantum carriers of information can be more efficient
previous not very strict considerations are just particulathan their classical analogs.
cases of its application to information processing systems. ~ Since we are in a new situation where relations of the
The principal importance of erasure among otherstandard thermodynamics are possibly broken, we prefer to
information-processing operations originates from the facwork with simple exactly-solvable models, where all general
that it is connected with changes of entropy, and thus cannagelations can be illustrated or disproved explicitly. In analo-
be realized in a closed system. One needs to couple thgous situation with the classical theory Szild®] used a
information-carrying system with its environment. There-model with one classical Brownian particle interacting with
fore, the process is accompanied with changes in heat whosts thermal bath.
magnitude has to be determined by thermodynamics. It was This paper is organized as follows. In Sec. Il we review
shown rigorously that all computations can be performedhe connection between thermodynamics and information
using reversible logical operations orl§]. erasure. Section Il is devoted to heat and entropy changes of
Here we will consider thermodynamic aspects of erasure@ quantum Brownian particle in contact with its thermal bath.
at low temperatures, so low that quantum effects start to playhis model can be considered as an extension to the quantum
an important role. We choose the simplest working exampletegime of the seminal model of Szilaf8]. In Sec. IV our
a one-dimensional Brownian particle in contact with a ther-main results on violation of the Landauer principle are pre-
mal bath at temperatur€, subject to an external confining sented. In Sec. V we analyze the most popular derivation of
potential. The main new aspect arising at low temperatures ihis principle [4—6], in order to show where its arguments
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appear to be inapplicable. Our conclusions are presented entropies(2.3) and(2.4) appear here on the information the-

Sec. VI oretical footing and not as purely thermodynamical quanti-
ties[15].
Il. ERASURE OF INFORMATION AND The above notion of an ipformation source does not ex-
GIBBSIAN THERMODYNAMICS haust the full meaning o_f th|s concgpt. Here it appears as a
model of the probabilistic information theory. Advantages
A. Source of information and shortcomings of this approach were nicely reviewed by

Let us start by briefly recalling what is meant by erasureiolmogorov([16].
of information. Since information is carried by physical sys-
tems, messages are coded by their states, namely, every state B. Erasure

(or possibly group of statgsorresponds to a “letter.” The Erasure is an operation that is done by an external agent

simplest example is a two-state system, which carries on ong order to reduce the entropy of the information carrier. This
bit of information. The basic model gfource of information  means that in its final state the carrier brings less informa-

in Shannonean, probabilistic information the¢iB—15 as- o, j.e., some amount of it has been erased. In particular, a
sumes that the carrier of information can be in d'ffere”tcomplete erasure corresponds to the minimization of en-
states with certairiso calleda priori) probabilities. In other tropy. Notice that erasure is defined as a “blind” operation,
words, the messages of this source appear randomly and thgich is done independently on the actual state of the infor-
measure of their expectation is given by the corresponding,ation carrier. This is how information processing systems
probabilities. For example, in the classical case the carrier o yerate: they do not recognize the actual state of a bit before
information may occupy a cell in its phase space with Vol-grasing it. Following standard assumptidds, 18 we will
ume dx dp/(27#2) with a priori probability P(x,p). Then  model external operations by a time-dependent Hamiltonian
different cells will correspond to different messages. In theH(t) of the carrier, namely, some of its parameters will be
quantum case the completely analogous situation is d&aried with time according to given trajectories. If the infor-

scribed by & density matrix, mation carrying system is closed, then its dynamics is de-
scribed by the Liouville equation fd?(x,p) in the classical
p=2 paln)(nl, (2.))  case or by the von Neumann equation
n
d i
(n[m)= Sy, (2.2 GiP= 7LP(OHO—HOPO], (2.5

which means that the carrier occupies a stajewith thea  in the quantum situation. As can be shown directly, the en-

priori probability p,,. Moreover, different quantum states are tropies(2.3) and (2.4) remain constant in time. In order to

exclusive as indicated by E€.2). As in the classical case, change them, one has to consider an information carrier,

the appearance of the carrier in different states will bringwhich is an open system. In that case a part of its energy will

different messages. be controlled(i.e., transferred or receivedy its environ-
The fundamental theorem by Shanrid8—15 states that ment asheat Indeed, if

the information carried by an information source is given by

its entropy. Namely, it is equal to U=t H(®p(1)] (2.6
is the average energy of the carrier, then its change during a
dxdp .
S=— J mp(p,x)m P(p,x), (2.3 time dt reads

dU=dQ+dW=tr{H dp]+trfpdH]. (2.7
in the classical case, and to
This is the energetic budget of the system. The last term
represents the averaged mechanical wabvK produced by
Si(p)=—2> pninp,=—tr(pinp), (2.4 an external agerjtL7,18. The first term in right-hand side of
. Eq. (2.7) arises due to the statistical redistribution in phase
space. We shall identify it with the change of hab®
[17,18, so Eq.(2.7) is just the first law. As can be shown

through Eq.(2.5), the heat is explicitly zero for a closed
result can be understood as follows. A source that has low ystem. All these formulas are valid in the classical case as

entropy occupies fewer states with higher probability. It canq. Herep should be substituted bj(x,p), and the trace

.be said to b‘? bet.ter "”OWT" and, t_herefore, the appearance gy, pe changed by the integration over the corresponding
its results will bring less information. In contrast, a sourcephase space

with higher entropy occupies more states with lower prob-
ability. Its messages are less expectable, and, therefore, bring
more information. The rigorous realization of this intuitive

argument appeared to be the most straightforward and fruit- In order to specify the situation, let us consider a Brown-
ful proof of the Shannon theorefi5,18. Notice that the ian particle as an information carrying system. A similar

in the quantum situation. Herg,y(p) is the von Neumann
entropy of the density matrix. The physical meaning of this

C. Brownian particle as an information carrier

056117-2



BREAKDOWN OF THE LANDAUER BOUND FQR. .. PHYSICAL REVIEW E 64 056117

simple model was employed by Szilafd] in his seminal  Since the external operation is assumed to be adiabatic, the
analysis of the Maxwell’s demon problem. The Browniantime-dependent distribution of the particle will be given by
particle has a Hamiltoniall (p,x,t), wherep,x are coordi- Eq. (2.8) with the corresponding time-dependent Hamil-
nate and momentum. A parameter that varies with time cagonianH(x,p,t). The Clausius equality

be the mass of the particle or the shape of its potential en-

ergy. The environment of the particle will be taken to be a

thermal bath. This is a generic situation, in the sense that the dO=TdS (2.9

bath satisfies the following generally accepted conditions

[17-19, which are identical for quantum and classical | . .
situations: which connects the _changgs of heat and entropy during the

(1) The interaction between the particle and bath is linearProcess can be derived directly from E¢2.6), (2.3, and
It is assumed to be so weak that the nonlinear modes of the2-7)- It holds that when compressing the phase space of the
bath are not excited, and the bath itself can be modeled asRarticle @S<0), it releases heatd@<0). Since for any
collection of harmonic oscillatorgL0,20,19. This assump- honadiabatic change one hd@<TdS (Clausius inequal-
tion has been verified rigorously, when starting from ratherity), |dQ| can only be larger if the process is not very slow.
general microscopic situations. In other words, the minimal amount of the released heat is

(2) The bath is a macroscopic system; the thermodynamiequal to| T d. This is the Landauer principle.
limit has been taken for it.

(3) Before it started to interact with the particle at some
initial time, the bath was in thermal equilibriuie., in a
Gibbsian stateat temperaturél. This temperature will be Let us now move to the quantum domain, which in the
refered to as the temperature of the bath. This assumptiopresent context just means the domain of low temperatures.
reflects the typical macroscopic preparation at the initiaWe assumehat the quantum carrier of information interacts
time. with its thermal bath, but so weakly, that it is described by

(4) The particle and bath together form a closed systemquantum Gibbs distribution at the bath temperaflire
Thus, the overall system is described by the Sdimger
equation(alternatively Heisenberg equatigns the quantum
case, and by Newton’s equations in the classical case. 1 H S H 01

A minimal model, which incorporates all these properties p=z&XR -~ Lstrexp— T (.19
was proposed in Ref$21,22, and later became known as
the Caldeira-Leggett mod€R0,19. The above assumptions - ) )
ensure that the reduced dynamics of the Brownian particld he concrete conditions on the weakness of the interaction
will be given by the quantum or classical Langevin equationgVill be discussed later. It can now easily be seen that, pro-
[19]. vided we use entropy as defined in Eg.4), the Clausius

As a result of interaction with the macroscopic bath, theinequality(2.9) still holds and all its consequences including
Brownian particle will relax with time towards a definite the Landauer principle are generalized automatically. The
stationary state. In the present paper we will additionallyimportant difference between the classical and quantum
assume that all external operations on the particle are adi&2Ses has to be noted already here: In the classical situation
batic, namely, they occur on time-scales that are much largdhere is no limitation on the interaction strength, and the
than the characteristic relaxation time. There are severdllassical Gibbs distribution appears naturally from the above
physical reasons for this restriction. First, in many circum-Standard conditions on the thermal bath.
stances the adiabatic process can be shown to be optimal, in
the sense that it is connected with minimal amount of work
done by the external agefit0,17,18. On the other hand,
this time-scale separation more naturally corresponds to the
interaction between a deterministic agent and the micro- A. Wigner function and effective temperatures
scopic particle.

Let us now consider the classical and quantum situatioré
separately. r

2. Quantum case

. QUANTUM BROWNIAN PARTICLE IN CONTACT
WITH ITS THERMAL BATH

As explained in Sec. |, at low temperatures of the bath the
ownian particle is not described by the quantum Gibbs
distribution, except for very weak interaction with the bath.
Therefore, its state at low temperatures has to be found from
o first principles, starting from the microscopic description of

As it is well known, under the above standard assumpthe path and the particle. This program was realized in Refs.
tions on the thermal bath the classical Brownian particle ref9,10,19,23. In particular, in Refs[9,10] we investigated
laxes to the Gibbs distributiofi7,18,23 statistical thermodynamics of the quantum Brownian par-
ticle.

Here we consider the simplest example, a harmonic oscil-
lator with Hamiltonian

1. Classical case

1 1
P(p,x)= Zexp{ — fH(p,x)

2 2
. 2.8 H(pX) = o+ - (3

1
Z=f dx dpexp{—fH(p,x)
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wherem is the mass, and is the width. The state of this I

particle can be described through the Wigner funcfio®]. ('~ w)(w?+ w%)—wﬁ=0- (3.6)
Recall that in quantum theory this object plays nearly the

same role as the common distribution of coordinate and mo-

mentum in the classical theory. The stationary Wigner funcq,, he present paper we will be mostly interested in the so-

tion reads(25,19,9,10 called quasi-Ohmic limit wherE is the largest characteristic
frequency of the problem. This is the most realistic situation

1 a p>  ax for information storin i is limi i-
— _ = _ _ar g devices. In this limit one approxi
WP X)=WRIWEO =52 N T, ex‘{ 2mT, 2T,]'  mately has
(3.2
whereW(p), W(x) are the probability distributions of mo- y y2 1-2¢
menta and coordinate, and where w1 === (1xJ1-4&)+ 1=+ , (3.
1,2 Zm( g) 2]"m2 \/1_—45 ( 7)
2
T=a(x?), Tp=—<IO ) (3.3
m 2
y 1y
. . . w3=I‘————<—) , (3.9
are two effective temperatures, to be discussed a bit later. m I'im

Equation(3.2) represents the state of the particle, provided

that the interaction with the bath was switched on long time

before, so that the particle already came to its stationaryvhere é=am/y? characterizes the relative importance of
state. The effective temperatur€s and T, depend not only ~ damping:§<1 corresponds to overdamped motion, while
on the system parametars T, anda, but also on the damp- >1 indicates underdamping. Singeis large, we need the
ing constanty, which quantifies the interaction with the ther- first leading terms in Eqg3.7) and(3.8). This brings[10]

mal bath, and on a large parameierthat is the maximal

characteristic frequency of the bath. In particular, the Gibb-

sian limit corresponds tg— 0. Then the distributior(3.2) (wz_wz)w(@) _wzl//( ﬁﬁwl)
tends to the quantum Gibbsiafi;= T, = 3% wocothGBhwp), Prm(w—wy) | TP 2 Y 2n
wherew,=\a/m [see Eqs(3.16 and(3.17]. In the classi- .

cal limit, which is realized forh—0 or T—, the depen- +w§¢(— -, (3.9
dence ony andI" disappears; botfi, andT, go toT, repro- ]

ducing the classical Gibbsian distributio2.8). The
appearance of the effective temperatures in the quantum re- ]
gime can be understood as follows. For—0 quantum _ ha (ﬁﬁwl) B (:37“”2 B
Gibbs distribution predicts the pure vacuum state for the par-  mm(wy— ;)| 2 2

ticle. Due to quantum entanglement this cannot be the case (3.10
for a nonweakly interacting particle, so musg, T, depend

on vy, and, being nontrivial, they have to be obtained from

first principles, as the state is not Gibbsian. The exact expredimiting cases can be studied with help of the following

sions forT,, T, reads[10,25,19 approximate values for thé function:
L _fr? iy w3y L 2
P [ (03— 0d) (03— 0d) (02— wd)(wi-w)) Yo)==—retxg, X<l (3.11)
2
w3y3
PR N E— l—T, (3.9
(01~ w3)(w3~ w3) 1 1
=Inx———- — =
, PO)=Inx— o gVl Ix|=1, (3.12
__anyl 21 N 2
* m2r (w%—wi)(wg—wi) (w%—w%)(wg—wg)

wherex is a complex number, ange=0.577 216 is the Eu-
ler constant. In the low-temperature limit—0 we obtain

2
. =T, 39 from Egs.(3.9 and(3.10

2 2y, 2 2
(0]~ w3)(w;— 03)

where = ¢(h Bw\/27) for k=1,2,3 andB=1/T as usual.
Further(z)=I""(z)/I'(z) is Euler's ¢ function. w, , 3 are
roots of the following cubic equation:

B Al w3 IN(T/wy)— 03 IN(T'w,)]

m(w1— wy)

b +0(T%, (3.13
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ha

w; Ty
—InN—+ —
TM(w;— wy)

TX: wo Sha

T2+0(T%. (3.19

The weak-coupling limit can be obtained from E@3.10
and (3.9 taking £&1 and noticing that

Y(ix)—p(—ix) 1

=—+ X
o coth(x),

(3.15

i

which is obtained from the reflection formuld:(z)I"(1
—2z)=l/(sin72). Here one has the following expressions:

2(//( ,Bzﬁ:) Ly iﬁﬁwo) - ( - i,Bﬁwo)

TooT4 Y
P Arm

2 2

hw fiBw
T,= 2°coth ﬁz o

hy [hBawg
47Tmy< 2 )' (3.17

GO)=Ix[¢' (—ix)— ¢ (ix)]. (3.18

PHYSICAL REVIEW E 64 056117

Sg=-— f dp dx Wp,x)In[AW(p,x)]=S,+S,—In%

_ ElanpTX

Phie (3.26
Notice that they all are different fror8,\(p) defined by Eg.
(2.9.

C. Heat and work

The expressions for heat and work are generalized from
Egs. (2.7) by simply using the Wigner functiodV(p,x) in-
stead ofp. This can be easily verified, when using E£8.37).

One can prove by a direct calculation that quantiigs Ty

do deserve their nomenclature, since the classical Clausius

equality can be generalized as
dU=dQ+dW=T,dS,+ T, dS+dW, (3.27)

for variation of any parameter. We will be especially inter-
ested in variation of the mass and the width of the potential.

The asymptotic expressions of these quantities read in thene corresponding changes of heat read

opposite, strongly damped regi@r<1 and for lowT,
(3.19

ha y*  wy ) 4
Tx—Fy|ﬂa—n1+ %T +O(T )

(3.20

It is interesting to mention as well the high-temperatiyea-
siclassical asymptotic values fofT,, T,. Applying Eq.
(3.11) one gets

f2(am—y*+T'my)

T,=T+ +0(43B%), (3.21)
P 12m?21 ( )
T,=T+ i +0O(h3B2 3.22
X 12mT ( )- @

B. Energy and partial entropies

The average energy of the Brownian particle
T, Ty
U:jdXdep,X)H(p,X)=?+? (3.23

depends orm andm, in contrast to its classical value We

will need entropies of momentum and coordinate distribution

1
sz—fde\/(p)InW(p)zEIn(mTp), (3.29

3 1T,
Sx__f dx WO)InW(x)= 5 In—. (3.25

The “Boltzmann” entropy reads

. C1(aT,  dTy TXOI a0
aQ_Z jga  oa a)’® (329
4 _1((9Tp (9TX+TpOI 35
mQ=3 om * om Tm/d™ (329

Using Egs.(3.10—(3.12 one gets expressions for heat. Let
us introduce the following notations:

B hy B ah 33
T 4amT az_ﬂ'yT’ (3.30
and then derive
iQ Tk . 23
a2 zmm w<h o (3
&Q_ 71")/T2 _ 33
&a_ 3ﬁa2' al/ ’ ( . 2
99 T h%yA(Z%+1)
om_ om 66m—3'|" a,<l, (3.33
09 hy
(?—m— 211-m2’ ay= 1. (3.34)

Notice that the last equation applies not only for low tem-
peratures, but also for weak couplifgpe Eq(3.30]. Using
these results one can show that

(?Q<

9a

(3.35
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for all values of parameters including, of course, the classical 1 1

limit. For the work done in this process one obtains in a S,n=Inw+1- — — ! . (3.43
simple manner from the Hamiltonia®.1) and Eq.(3.3) 24w 3200*  2688W°
W | oH 1, 1T, Notice that the same quantity governs the Boltzmann en-
£:<£>:§<X =320 tropy
Sg=S,+S—Infi=Inw+1. (3.49

aw | oH 1 (p?) 1T, _

am \om/ =Tam = 336y appears to coincide with the leading terms of B¢3.

It is known to be larger than the von Neumann entropy, and
It is interesting to note that the signs ®® and9)V in Eqs.  this is obvious from the sign of the correction terms in Eq.
(3.35 and(3.36) are the same as in the classical case, wheré3.43).

T,=T,=T. If some parametera or m) is varied, then the derivative

of S,y with respect to it reads
D. Density matrix

1

To investigate the von Neumann entrof@/4) one needs W+ o
the density matrix corresponding to the Wigner function ds,y=In dw. (3.45

(3.2). Applying the standard relation between the density w—}

matrix in coordinate representation and the Wigner function, 2

In other words, the sign of the changeSyy is determined
Tply— =) = /4
<X+ 2|p|X 2> _j dpe PY"W(p,x), (337 by the sign of the change iw. This holds as well for the
change inSg, so qualitatively they carry the same informa-

one gets the following expression: tion.
In this context let us stress again that von Neumann en-
, 1 (x+x)%2  (x—x")? tropy Syn(p) is the unique quantum measure of localization
(Xlp|x")= \/mex - 8(x2) - 282/(p?) | and information, whereas the entropi8s, S, characterize

localizations of momenta and coordinate separately. Differ-

ences betwees,+S, and S, are due to the fact that in
The physical meaning of Eq3.39 is clear: The diagonal duantum theory momentum and coordinate cannot be mea-
elements x=x') are distributed at the scam, while the sgred simultaneously; in this senSg+ S, characterize two _
maximally off-diagonal elementsx& —x'), which charac- dlffe'rent.meas.urement setups. Nevertheless, for the harmonic
terize coherence, are distributed with the characteristic scalR@'ticle if Sy increasegdecreasgs then S+ S, increases

ﬁ/\/(p2>. We have to find eigenfunctions and eigenvectors Oiédecrease)sils We"r'] NOtiﬁe thhat the regtl imp%rtance$y‘, Slx h
this density matrixJdx’ (x| p|x’ (") = pufa(X). The so- ecomes clear when they have to be used to generalize the

lution of this problem involves some tabulated formulas forglausmdsflne?]gallty. The 1\;on _Il_\leu.mannhentrdﬁ%(, cannot
Hermite polynoms, and results in e used for this purpose M # Tp, I.e., wheny#0.

11" IV. ENTROPY DECREASE WITH HEAT ABSORPTION
W_ —
_ 1 2 Now we will show that there are erasure processes,
pp=——| —=| . (3.39
1 1 namely, processes whedsS5, <0, which are accompanied
WH | Wty by an absorption of heat. We noticed already that heat is

always absorbed, when the mass is increapeet Eq.
1/4 (3.39)]. It will now be shown that there is a mass-increasing
) , (3.40  process, wher@lS,y<0. Using Egs.(3.20 and(3.19 one
has at very low temperatures

(p%)
h2(x?)

f.(x)=c H,(c x)e~ >, c=(

Ap Ax (p2>(X2> mT,Tx ow? 9|1 2\ (2 _ 7, Im
\/ ., (3.4) am ~ am| 72 0P| = 1=y
. . . 2 2
whereH,, are Hermite polynomials, and it holds that=} 1+ 2 in (4.1)
due to the Heisenberg uncertainty relation. The result for the am/ am

von Neumann entrop§2.4) now readq19] . o o o
This expression is negative in its range of applicability.

Sen=(W+3)In(w+3)—(w—3)In(w—3). (3.42 An analogous argument can be brought about in the
weak-coupling case. Starting from Eq8.13 and(3.14 or
The first terms in its largev expansion read alternatively from Eqs(3.16 and(3.17) one derives the fol-
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FIG. 1. Dimensionless phase space volume=ApAx/# FIG. 2. Dimensionless phase space volume=ApAx/#
= J(x®)(p?)/#? vs massm. The other parameters ase=y=1, I = (x?)(p%)/%? vs massn. From top to the bottonil =0.25, 0.20,

=500, i=1, andT=0. It is seen that the volume decays mono- 0-15, and 0.10. The other parameters are the same as in Fig. 1:

tonically towards its minimal value 1/2, set by the uncertainty =Y=1, '=500, andi=1. It is seen that region afi's where the
relation. volume decays. This region is completely shrunk Ter0.475 53.

For higher temperatures the phase space volume monotonically in-

lowing expressions for the effective temperatures in thefréases witm
weak-couplingy— 0 and low-temperature limit
temperatures of the bath the particle has an appreciable en-
hog hy r hog hy tropy due to its entanglement with the bdtiecall that for
Tp:T + ﬁln—\/_, Tx:T T omm’ (4.2 zero temperature the state of the overall sysfpatrticle plus
@oVe bath is pure, and the von Neumann entropy of the particle is
the adequate measure of its entanglement with the]bath

This implies When its mass is increased, its state moves towards the
w2 y Gibbsian limit, and the entropy is reduced just .because in the
— =1 In—, 4.3 zero-temperature Gibbsian case the entropy is exactly zero.
Jm amyam  wye? This decrease will also occur for low but finite temperatures

of the bath, when entanglement still contributes to the en-
which is again negative in its range of applicabillty>wo.  tropy. So it isquantum entanglemettat necessarily leads to
The general situation at low temperatures is illustrated bythis counterintuitive result.
Fig. 1, where it is seen that monotonically decreases when  Notice that this effect does not imply a violation of the
increasing the mass. In the limit— o it tends to its corre-  second law in Thomson’s formulation, which speaks about
sponding Gibbsian value. This can be understood by noticinghe impossibility to extract work by a cyclic variation of a
that the stationary state of a very heavy Brownian particlesystem parameté®,10]. Indeed, if after increasing the mass,
will not be influenced much by the bath. Indeed, as seemne decreases it in order to complete the cycle, the external
from Egs.(3.7)—(3.10 the dimensionless parameter that con-agent will do work on the particle, and it will release heat,
trols transition from the weakly damped to the strongly-thereby nullifying the overall work and heéts expected, the
damped regime i§=an/ 2. So to increase the mass while overall work is positive if nonadiabatic variations are consid-
all other parameters are kept fixed, produces the same effegted[9,10]).
as to decrease the coupling constant

Recall that the corresponding expression d@l/ m was B. Finite temperatures

positive. This just means that for the variationmfve have . ,
an interesting case where heat is absorbed when entropy js 1€ above effecbw/dm<0 was analytically illustrated

decreasing. This is a counterexample for the general validitf®" 1—0- However, it persists as well at finite, but not too
of the Landauer principle. arge temperatures. This situation is illustrated in Fig. 2.

Since in the classical case, namely, with high temperatures,
one always has,,w=T/(2y/ma)>0, we expect that the re-
gion with d,,w<<0 will completely disappear at some finite

In the classical case one has an intuitively clear resulteritical temperature. This is indeed the case, as Fig. 2 shows.
Upon increasing the mass of the particle it absorbs heat,

A. Where classical intuition is correct and where it fails

dO=dmgQ/om=>0, while it performs work against the ex- C. Variation of the spring constant
ternal agentdW=—-d90<0. In doing so, its entropy in- L
creasesdS=dO/T. The analogous variation i does not lead to such an

In the quantum case heat is also released and work is aldfusual result. Here instead of Hg.1) one has

done on the environment, as follows from E§.36). How-

. ; 1 m ¥> I'm e
ever, an unusual point appears: The quantum particle de-_“_ —(x)(p?) | = 11— In—+In>|<o0
creases its entropy when the mass is increased, sinceda|z? why? am vy am
dS,n/dm<0. To understand this point we notice that at low (4.9
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but the corresponding expressi28 for 99/ da is nega-
tive as well. An expression analogous to E4.1) can be

PHYSICAL REVIEW E 64 056117

One applies here Eq$3.21), (3.22, and (3.43 to get for
variation ofm,

obtained for the weak-coupling limit. Using E¢.2) one

gets dQ _dSn_ h*yP s o
ow? vy r
T In—<0. (4.5  The deviation from the Clausius equality, and thus from the
ayjam @o

Landauer principle, thus disappears for high temperatures or
for y—0 and/orh—0, as it should be. It is seen as well that
An important fact should be mentioned here. Although thethe correction term has a sign opposite to the main effect:
particle just releases heat during localization, this heat isvhen increasing its mass, the particle absorbs heat, but the
smaller than expected, since it scales at low temperatures ggall correction in right-hand side of E.7), which ap-
|dQ|~T?da [see Eq.(3.32]. This already invalidates the pears due to the common influence of the quantum effects
Landauer bounddQ|=T|dS~T da, now only in magni- and interaction with the bath, tends to make the effect
tude, and not in sign. In this context the parameters of amaller. This is consistent with previous observation that at
statistical system can be distinguished as active and passiview T the entropy decreases.

In our concrete case the width of the potentias a passive
parameter, in a sense that its variations result in effects,
which for any temperature are qualitativelyut not quanti-
tatively) similar to the classical case. In contrast, the active
parametergin our case it is the mass) invert their behav-
ior at low temperatures.

V. ON A POPULAR DERIVATION
OF THE LANDAUER BOUND

Let us discuss in a more general perspective the obtained
result on the violation of the Landauer principle. For this
purpose we will analyze one of the simplest derivations of
this principle[4—6], in order to understand what essentially
goes into it and where its argument may be inapplicable.

Here we will especially point out on applicability of our  The popular derivations go as follows. Erasure is accom-
result in the weak-coupling limit. First we will make an ob- panied by reduction of entropy of the information-carrying
vious remark that the precise meaning of this limiist not  system. Since entropy of the overall system, which is the
be understood in the sense=0, since the damping constant carrier plus bath, cannot decrease, one quickly concludes that
v is never explicitly zero in practice, and having put it zero entropy of the bath should increase, thereby producing heat.
one will not have at all a possibility to change the entropy ofThis argument seems to be rather solid, because, instead of
the particle. The weak-coupling limit is understood in ainvolving any derivation, it just directly refers to the second
sense that the interaction energy of the particle and the bataw, namely, to the Clausius inequality. However, there are
happened to be sufficiently small compared to the energy ahree assumptionis that inequality, which are rather restric-
the particle itself18] (since the energy of the bath is infinite tive. They immediately pertain to the Landauer inequality.
there is no need to involve the bath heréor low tempera- The first assumption is that the total entrofyof the
tures andy—0 the energy of the particle is given by its overall system is sum of partial entropies of system and bath,
zero-point valuet \Ja/m. Because the interaction energy is S=Ss+ Sg. This is obvious in classical systems, but may be
explicitly zero for y=0, it will be enough to choose suf-  invalid in quantum systems. The second is quick thermaliza-
ficiently small to ensure the above condition of the weak-tion in the bath, implyingdQg=T dS;. The third assump-
coupling limit. tion is smallness of the interaction enedg, , allowing to

Let us now turn to Eq(3.34) that represents the amount conclude from energy conservatiohQs+dQg+dQ,=0
of heat obtained by the particle when changing the mass amplies thatdS;=dQg/T=—-dQs/T. With these assump-
low temperatures. It is seen that in the leading order thidgions it now follows immediately that € dS=dSs+dSs
quantity is proportional tey. Thus, although the particle isin =dSs—dQOg/T.
the weak-coupling regime, it still gets a positivehough These asumptions are strictly valid only for noninteract-
smal) amount of heat during the enhancement of its mass.ing information carrier and its bath. However, without inter-
action there is no reason to speak about erasure. Under sev-
eral additional conditiong18] these assumptions may be
valid as certainapproximationsin the weak-coupling case.
Mheir validity is especially endangered in the quantum re-
. . 2~ gime where the complete entropy, which is the subject of the
peratures. This follows from the fact that in this limit second law applied to the complete system, is not equal to
Tp =T as seen from Egs(3.21) and (3.22. A more . the sum of the separate entropies if there occurs quantum
elaborated discussion goes as follows. One has the fonow'ngntanglement. So the above simple derivation is actually re-

exact relation: stricted, as was noted already in the context of rather differ-
AO—T dSn=(T.—T)dS+(T.—T)d ent physical argumen{26,27.
Q Sn= (T DASH(T,~T)dS, The general validity of the Landauer principle must be
—Td(Sn—S—S))- completely put on the validity of the Clausius inequality. It

D. Weak-coupling limit

E. High temperatures

Finally we wish to show in more detail that the Landaue
principle does hold in our model for sufficiently high tem-

(4.6
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was our main message that quantum entanglement limits theniveral validity. In the reported case all general require-
validity of the Clausius inequality and, consequently, of thements on the information carrier and its interaction with the
Landauer bound. It can be checked explicitly that in thatbath are met. The only new point of our approach is that we
regime the above assumptions are invalid: the interactiomvere interested in sufficiently low temperatures, where quan-
energy contributes to the total energy, and the total entropy igum effects are relevant. The Landauer principle appeared to
not the sum of two partial entropi¢8,10]. Recently viola- be violated by these effecté particular, by entanglement
tions of other formulations of the second law were noticedAt high temperatures we reproduce its validity. In fact, in

and investigated in Ref$28,29.

VI. CONCLUSION

The Landauer principle requires dissipatimeleasg of
T|dS units of energy as a consequence of erasurgd 6f
units of information. This was believed to be the offiy-
damentalenergy cost of computational procesgds-6,8.

this limit our model is equivalent to that considered in Ref.
[8], where the classical Landauer principle was derived in a
quite general ground.

Recently the Landauer bound attracted a serious attention
by workers in the field of applied information scien@].
There is a definite belief that this bound can be approached
by further miniaturization of computational devices. It is
hoped that the present paper will help to understand limita-

Though, in practice, computers dissipate much more energyions of the Landauer principle itself, which may lead to

the Landauer principle was considered to put a generghnexpected mechanisms for computing in the quantum re-
physical bound to which every computational device inter-gime.

acting with its thermal environment must satisfy. Indeed, in

several physical situations the Landauer principle can be

proved explicitly[8].
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