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Breakdown of the Landauer bound for information erasure in the quantum regime
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A known aspect of the Clausius inequality is that an equilibrium system subjected to a squeezingdS,0 of
its entropy must release at least an amountud”Qu5TudSu of heat. This serves as a basis for the Landauer
principle, which puts a lower boundT ln 2 for the heat generated by erasure of one bit of information. Here we
show that in the world of quantum entanglement this law is broken. A quantum Brownian particle interacting
with its thermal bath can either generate less heat or evenabsorbheat during an analogous squeezing process,
due to entanglement with the bath. The effect exists even for weak but fixed coupling with the bath, provided
that temperature is low enough. This invalidates the Landauer bound in the quantum regime, and suggests that
quantum carriers of information can be more efficient than assumed so far.
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I. INTRODUCTION

The laws of thermodynamics are at the basis of our
derstanding of nature, so it is rather natural that they h
applications beyond their original scope, e.g., in comput
and information processing@1–8#. The first connection be
tween information storage and thermodynamics was mad
von Neumann in the 1950s@2#. His speculation that eac
logical operation costs at least an amount of energyT ln 2
was too pessimistic. Landauer pointed out that revers
‘‘one-to-one’’ operations can be performed, in princip
without dissipation; only irreversible operations ‘‘many-t
one’’ operations, like erasure, require dissipation of ener
at an amount at least equal to the von Neumann estim
T ln 2 per erased bit@4,5#. This conclusion is a direct conse
quence of the Clausius inequality, which connects the cha
of heat in a given process with the change of entropy. I
perfectly consistent with intuition, since as everybody ha
chance to observe, equilibrium substances typically rele
heat under isothermal compression of their entropy~or vol-
ume, which is the same for a good majority of classi
cases!. Rather recently the basis of the effect was finally p
on the Clausius inequality@8#, and it was shown that the
previous not very strict considerations are just particu
cases of its application to information processing system

The principal importance of erasure among oth
information-processing operations originates from the f
that it is connected with changes of entropy, and thus can
be realized in a closed system. One needs to couple
information-carrying system with its environment. Ther
fore, the process is accompanied with changes in heat w
magnitude has to be determined by thermodynamics. It
shown rigorously that all computations can be perform
using reversible logical operations only@6#.

Here we will consider thermodynamic aspects of eras
at low temperatures, so low that quantum effects start to p
an important role. We choose the simplest working exam
a one-dimensional Brownian particle in contact with a th
mal bath at temperatureT, subject to an external confinin
potential. The main new aspect arising at low temperature
1063-651X/2001/64~5!/056117~9!/$20.00 64 0561
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entanglement of the Brownian particle with the bath. The
fore, even when the total system is in a pure state, the s
system~the Brownian particle! is in a mixed state. Thus its
stationary state cannot be given by equilibrium~Gibbsian!
quantum thermodynamics, which would predict forT→0
that the subsystem goes to its ground state, the pure vac
state. The latter can only be approached for not too l
temperatures, given a fixed but weak coupling with the ba
In general, a new situation arises, for which a generali
thermodynamical interpretation can be given@9,10# ~for
analogous situations in glasses and related systems see
@11,12#!. In particular, the classical Clausius inequality
invalid. We stress that this situation is not at all exception
since it appears even for a small but generic coupling p
vided that temperature is low enough.

Our main result will show that when entropy of the pa
ticle is decreased by external agents, namely, when a pa
the information carried by it is erased, the particle can abs
heat in clear contrast with the classical intuition. Later w
shall apply this result to show that there is not anythi
similar to Landauer bound at low temperatures. Thus in t
respect quantum carriers of information can be more effic
than their classical analogs.

Since we are in a new situation where relations of
standard thermodynamics are possibly broken, we prefe
work with simple exactly-solvable models, where all gene
relations can be illustrated or disproved explicitly. In ana
gous situation with the classical theory Szilard@3# used a
model with one classical Brownian particle interacting w
its thermal bath.

This paper is organized as follows. In Sec. II we revie
the connection between thermodynamics and informa
erasure. Section III is devoted to heat and entropy change
a quantum Brownian particle in contact with its thermal ba
This model can be considered as an extension to the quan
regime of the seminal model of Szilard@3#. In Sec. IV our
main results on violation of the Landauer principle are p
sented. In Sec. V we analyze the most popular derivation
this principle @4–6#, in order to show where its argumen
©2001 The American Physical Society17-1
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appear to be inapplicable. Our conclusions are presente
Sec. VI.

II. ERASURE OF INFORMATION AND
GIBBSIAN THERMODYNAMICS

A. Source of information

Let us start by briefly recalling what is meant by erasu
of information. Since information is carried by physical sy
tems, messages are coded by their states, namely, every
~or possibly group of states! corresponds to a ‘‘letter.’’ The
simplest example is a two-state system, which carries on
bit of information. The basic model ofsource of information
in Shannonean, probabilistic information theory@13–15# as-
sumes that the carrier of information can be in differe
states with certain~so calleda priori! probabilities. In other
words, the messages of this source appear randomly an
measure of their expectation is given by the correspond
probabilities. For example, in the classical case the carrie
information may occupy a cell in its phase space with v
ume dx dp/(2p\) with a priori probability P(x,p). Then
different cells will correspond to different messages. In
quantum case the completely analogous situation is
scribed by a density matrixr,

r5(
n

pnun&^nu, ~2.1!

^num&5dnm , ~2.2!

which means that the carrier occupies a stateun& with the a
priori probabilitypn . Moreover, different quantum states a
exclusive as indicated by Eq.~2.2!. As in the classical case
the appearance of the carrier in different states will br
different messages.

The fundamental theorem by Shannon@13–15# states that
the information carried by an information source is given
its entropy. Namely, it is equal to

S52E dx dp

2p\
P~p,x!ln P~p,x!, ~2.3!

in the classical case, and to

SvN~r!52(
n

pn ln pn52tr~r ln r!, ~2.4!

in the quantum situation. HereSvN(r) is the von Neumann
entropy of the density matrixr. The physical meaning of this
result can be understood as follows. A source that has lo
entropy occupies fewer states with higher probability. It c
be said to be better known, and, therefore, the appearan
its results will bring less information. In contrast, a sour
with higher entropy occupies more states with lower pro
ability. Its messages are less expectable, and, therefore,
more information. The rigorous realization of this intuitiv
argument appeared to be the most straightforward and f
ful proof of the Shannon theorem@15,18#. Notice that the
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entropies~2.3! and~2.4! appear here on the information the
oretical footing and not as purely thermodynamical quan
ties @15#.

The above notion of an information source does not
haust the full meaning of this concept. Here it appears a
model of the probabilistic information theory. Advantag
and shortcomings of this approach were nicely reviewed
Kolmogorov @16#.

B. Erasure

Erasure is an operation that is done by an external ag
in order to reduce the entropy of the information carrier. T
means that in its final state the carrier brings less inform
tion, i.e., some amount of it has been erased. In particula
complete erasure corresponds to the minimization of
tropy. Notice that erasure is defined as a ‘‘blind’’ operatio
which is done independently on the actual state of the in
mation carrier. This is how information processing syste
operate: they do not recognize the actual state of a bit be
erasing it. Following standard assumptions@17,18# we will
model external operations by a time-dependent Hamilton
H(t) of the carrier, namely, some of its parameters will
varied with time according to given trajectories. If the info
mation carrying system is closed, then its dynamics is
scribed by the Liouville equation forP(x,p) in the classical
case or by the von Neumann equation

d

dt
r5

i

\
@r~ t !H~ t !2H~ t !r~ t !#, ~2.5!

in the quantum situation. As can be shown directly, the
tropies ~2.3! and ~2.4! remain constant in time. In order t
change them, one has to consider an information car
which is an open system. In that case a part of its energy
be controlled~i.e., transferred or received! by its environ-
ment asheat. Indeed, if

U5tr@H~ t !r~ t !# ~2.6!

is the average energy of the carrier, then its change durin
time dt reads

dU5d”Q1d”W5tr@H dr#1tr@r dH#. ~2.7!

This is the energetic budget of the system. The last te
represents the averaged mechanical workd”W produced by
an external agent@17,18#. The first term in right-hand side o
Eq. ~2.7! arises due to the statistical redistribution in pha
space. We shall identify it with the change of heatd”Q
@17,18#, so Eq.~2.7! is just the first law. As can be show
through Eq.~2.5!, the heat is explicitly zero for a close
system. All these formulas are valid in the classical case
well. Herer should be substituted byP(x,p), and the trace
will be changed by the integration over the correspond
phase space.

C. Brownian particle as an information carrier

In order to specify the situation, let us consider a Brow
ian particle as an information carrying system. A simil
7-2



an

ca
e
a

t t
n
a

a
t

as

e

m

e

ti
tia

m

ie
s
s
ic
n

h
e
ll
d
rg
er
m
al
or
,
t
ro

tio

p
re

, the
y

il-

the

the

w.
t is

he
res.
ts
by

tion
ro-

g
he

tum
ation
he
ove

the
bs

th.
rom
of
efs.

ar-

cil-

BREAKDOWN OF THE LANDAUER BOUND FOR . . . PHYSICAL REVIEW E 64 056117
simple model was employed by Szilard@3# in his seminal
analysis of the Maxwell’s demon problem. The Browni
particle has a HamiltonianH(p,x,t), wherep,x are coordi-
nate and momentum. A parameter that varies with time
be the mass of the particle or the shape of its potential
ergy. The environment of the particle will be taken to be
thermal bath. This is a generic situation, in the sense tha
bath satisfies the following generally accepted conditio
@17–19#, which are identical for quantum and classic
situations:

~1! The interaction between the particle and bath is line
It is assumed to be so weak that the nonlinear modes of
bath are not excited, and the bath itself can be modeled
collection of harmonic oscillators@10,20,19#. This assump-
tion has been verified rigorously, when starting from rath
general microscopic situations.

~2! The bath is a macroscopic system; the thermodyna
limit has been taken for it.

~3! Before it started to interact with the particle at som
initial time, the bath was in thermal equilibrium~i.e., in a
Gibbsian state! at temperatureT. This temperature will be
refered to as the temperature of the bath. This assump
reflects the typical macroscopic preparation at the ini
time.

~4! The particle and bath together form a closed syste
Thus, the overall system is described by the Schro¨dinger
equation~alternatively Heisenberg equations! in the quantum
case, and by Newton’s equations in the classical case.

A minimal model, which incorporates all these propert
was proposed in Refs.@21,22#, and later became known a
the Caldeira-Leggett model@20,19#. The above assumption
ensure that the reduced dynamics of the Brownian part
will be given by the quantum or classical Langevin equatio
@19#.

As a result of interaction with the macroscopic bath, t
Brownian particle will relax with time towards a definit
stationary state. In the present paper we will additiona
assume that all external operations on the particle are a
batic, namely, they occur on time-scales that are much la
than the characteristic relaxation time. There are sev
physical reasons for this restriction. First, in many circu
stances the adiabatic process can be shown to be optim
the sense that it is connected with minimal amount of w
done by the external agent@10,17,18#. On the other hand
this time-scale separation more naturally corresponds to
interaction between a deterministic agent and the mic
scopic particle.

Let us now consider the classical and quantum situa
separately.

1. Classical case

As it is well known, under the above standard assum
tions on the thermal bath the classical Brownian particle
laxes to the Gibbs distribution@17,18,23#

P~p,x!5
1

Z
expF2

1

T
H~p,x!G ,

Z5E dx dpexpF2
1

T
H~p,x!G . ~2.8!
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Since the external operation is assumed to be adiabatic
time-dependent distribution of the particle will be given b
Eq. ~2.8! with the corresponding time-dependent Ham
tonianH(x,p,t). The Clausius equality

d”Q5TdS, ~2.9!

which connects the changes of heat and entropy during
process can be derived directly from Eqs.~2.6!, ~2.3!, and
~2.7!. It holds that when compressing the phase space of
particle (dS,0), it releases heat (d”Q,0). Since for any
nonadiabatic change one hasd”Q<TdS ~Clausius inequal-
ity!, ud”Qu can only be larger if the process is not very slo
In other words, the minimal amount of the released hea
equal touT dSu. This is the Landauer principle.

2. Quantum case

Let us now move to the quantum domain, which in t
present context just means the domain of low temperatu
We assumethat the quantum carrier of information interac
with its thermal bath, but so weakly, that it is described
quantum Gibbs distribution at the bath temperatureT,

r5
1

Z
expF2

H

T G , Z5tr expF2
H

T G . ~2.10!

The concrete conditions on the weakness of the interac
will be discussed later. It can now easily be seen that, p
vided we use entropy as defined in Eq.~2.4!, the Clausius
inequality~2.9! still holds and all its consequences includin
the Landauer principle are generalized automatically. T
important difference between the classical and quan
cases has to be noted already here: In the classical situ
there is no limitation on the interaction strength, and t
classical Gibbs distribution appears naturally from the ab
standard conditions on the thermal bath.

III. QUANTUM BROWNIAN PARTICLE IN CONTACT
WITH ITS THERMAL BATH

A. Wigner function and effective temperatures

As explained in Sec. I, at low temperatures of the bath
Brownian particle is not described by the quantum Gib
distribution, except for very weak interaction with the ba
Therefore, its state at low temperatures has to be found f
first principles, starting from the microscopic description
the bath and the particle. This program was realized in R
@9,10,19,24#. In particular, in Refs.@9,10# we investigated
statistical thermodynamics of the quantum Brownian p
ticle.

Here we consider the simplest example, a harmonic os
lator with Hamiltonian

H~p,x!5
p2

2m
1

ax2

2
, ~3.1!
7-3
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wherem is the mass, anda is the width. The state of this
particle can be described through the Wigner function@18#.
Recall that in quantum theory this object plays nearly
same role as the common distribution of coordinate and
mentum in the classical theory. The stationary Wigner fu
tion reads@25,19,9,10#

W~p,x!5W~p!W~x!5
1

2p
A a

mTpTx
expF2

p2

2mTp
2

ax2

2Tx
G ,

~3.2!

whereW(p), W(x) are the probability distributions of mo
menta and coordinate, and where

Tx5a^x2&, Tp5
^p2&
m

~3.3!

are two effective temperatures, to be discussed a bit la
Equation~3.2! represents the state of the particle, provid
that the interaction with the bath was switched on long ti
before, so that the particle already came to its station
state. The effective temperaturesTp andTx depend not only
on the system parametersm, T, anda, but also on the damp
ing constantg, which quantifies the interaction with the the
mal bath, and on a large parameterG that is the maximal
characteristic frequency of the bath. In particular, the Gi
sian limit corresponds tog→0. Then the distribution~3.2!

tends to the quantum Gibbsian:Tx5Tp5 1
2 \v0coth(12b\v0),

wherev05Aa/m @see Eqs.~3.16! and~3.17!#. In the classi-
cal limit, which is realized for\→0 or T→`, the depen-
dence ong andG disappears; bothTp andTx go toT, repro-
ducing the classical Gibbsian distribution~2.8!. The
appearance of the effective temperatures in the quantum
gime can be understood as follows. ForT→0 quantum
Gibbs distribution predicts the pure vacuum state for the p
ticle. Due to quantum entanglement this cannot be the c
for a nonweakly interacting particle, so mustTx , Tp depend
on g, and, being nontrivial, they have to be obtained fro
first principles, as the state is not Gibbsian. The exact exp
sions forTp , Tx reads@10,25,19#

Tp5
\gG2

pm F v1
2c1

~v2
22v1

2!~v3
22v1

2!
1

v2
2c2

~v1
22v2

2!~v3
22v2

2!

1
v3

2c3

~v1
22v3

2!~v2
22v3

2!
G2T, ~3.4!

Tx52
a\gG2

m2p
F c1

~v2
22v1

2!~v3
22v1

2!
1

c2

~v1
22v2

2!~v3
22v2

2!

1
c3

~v1
22v3

2!~v2
22v3

2!
G2T, ~3.5!

whereck5c(\bvk/2p) for k51,2,3 andb51/T as usual.
Furtherc(z)5G8(z)/G(z) is Euler’s c function. v1,2,3 are
roots of the following cubic equation:
05611
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~G2v!~v21v0
2!2v

gG

m
50. ~3.6!

In the present paper we will be mostly interested in the
called quasi-Ohmic limit whereG is the largest characteristi
frequency of the problem. This is the most realistic situat
for information storing devices. In this limit one approx
mately has

v1,25
g

2m
~16A124j!1

g2

2Gm2 F16
122j

A124j
G , ~3.7!

v35G2
g

m
2

1

G S g

mD 2

, ~3.8!

where j5am/g2 characterizes the relative importance
damping:j!1 corresponds to overdamped motion, whilej
@1 indicates underdamping. SinceG is large, we need the
first leading terms in Eqs.~3.7! and ~3.8!. This brings@10#

Tp5
\

p~v12v2! F ~v1
22v2

2!cS b\G

2p D2v1
2cS b\v1

2p D
1v2

2cS b\v2

2p D G2T, ~3.9!

Tx5
\a

mp~v12v2! FcS b\v1

2p D2cS b\v2

2p D G2T.

~3.10!

Limiting cases can be studied with help of the followin
approximate values for thec function:

c~x!52
1

x
2gE1x

p2

6
, uxu!1, ~3.11!

c~x!5 ln x2
1

2x
2

1

12x2
, uxu>1, ~3.12!

wherex is a complex number, andgE50.577 216 is the Eu-
ler constant. In the low-temperature limitT→0 we obtain
from Eqs.~3.9! and ~3.10!

Tp5
\@v1

2 ln~G/v1!2v2
2 ln~G/v2!#

p~v12v2!
1O~T4!, ~3.13!
7-4
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Tx5
\a

pm~v12v2!
ln

v1

v2
1

pg

3\a
T21O~T4!. ~3.14!

The weak-coupling limit can be obtained from Eqs.~3.10!
and ~3.9! taking j@1 and noticing that

c~ ix !2c~2 ix !

ip
5

1

xp
1coth~xp!, ~3.15!

which is obtained from the reflection formula:G(z)G(1
2z)5p/(sinpz). Here one has the following expressions

Tp5Tx1
\g

4pm F2cS b\G

2p D2cS ib\v0

2p D2cS 2
ib\v0

2p D G ,
~3.16!

Tx5
\v0

2
coth

\bv0

2
1

\g

4pm
GS \bv0

2 D , ~3.17!

G~x!5 ix@c8~2 ix !2c8~ ix !#. ~3.18!

The asymptotic expressions of these quantities read in
opposite, strongly damped regionj!1 and for lowT,

Tp5
\g

pm
ln

Gm

g
1

\a

pg
1O~T4!, ~3.19!

Tx5
\a

pg
ln

g2

am
1

pg

3\a
T21O~T4!. ~3.20!

It is interesting to mention as well the high-temperature~qua-
siclassical! asymptotic values forTp , Tx . Applying Eq.
~3.11! one gets

Tp5T1
\2~am2g21Gmg!

12m2T
1O~\3b2!, ~3.21!

Tx5T1
\2a

12mT
1O~\3b2!. ~3.22!

B. Energy and partial entropies

The average energy of the Brownian particle

U5E dx dpW~p,x!H~p,x!5
Tp

2
1

Tx

2
~3.23!

depends ona andm, in contrast to its classical valueT. We
will need entropies of momentum and coordinate distribut

Sp52E dp W~p!ln W~p!5
1

2
ln~mTp!, ~3.24!

Sx52E dx W~x!ln W~x!5
1

2
ln

Tx

a
. ~3.25!

The ‘‘Boltzmann’’ entropy reads
05611
he

n

SB52E dp dx W~p,x!ln@\W~p,x!#5Sp1Sx2 ln \

5
1

2
ln

mTpTx

a\2
. ~3.26!

Notice that they all are different fromSvN(r) defined by Eq.
~2.4!.

C. Heat and work

The expressions for heat and work are generalized fr
Eqs. ~2.7! by simply using the Wigner functionW(p,x) in-
stead ofr. This can be easily verified, when using Eq.~3.37!.
One can prove by a direct calculation that quantitiesTp , Tx
do deserve their nomenclature, since the classical Clau
equality can be generalized as

dU5d”Q1d”W5Tp dSp1Tx dSx1d”W, ~3.27!

for variation of any parameter. We will be especially inte
ested in variation of the mass and the width of the potent
The corresponding changes of heat read

d” aQ5
1

2 S ]Tp

]a
1

]Tx

]a
2

Tx

a Dda, ~3.28!

d”mQ5
1

2 S ]Tp

]m
1

]Tx

]m
1

Tp

m Ddm. ~3.29!

Using Eqs.~3.10!–~3.12! one gets expressions for heat. L
us introduce the following notations:

a15
\g

4pmT
, a25

a\

pgT
, ~3.30!

and then derive

]Q
]a

52
T

2a
1

\2

24mT
, a1!1, ~3.31!

]Q
]a

52
pgT2

3\a2
, a1>1, ~3.32!

]Q
]m

5
T

2m
1

\2g2~z211!

66m3T
, a2!1, ~3.33!

]Q
]m

5
\g

2pm2
, a2>1. ~3.34!

Notice that the last equation applies not only for low te
peratures, but also for weak coupling@see Eq.~3.30!#. Using
these results one can show that

]Q
]a

<0,
]Q
]m

>0, ~3.35!
7-5
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A. E. ALLAHVERDYAN AND TH. M. NIEUWENHUIZEN PHYSICAL REVIEW E 64 056117
for all values of parameters including, of course, the class
limit. For the work done in this process one obtains in
simple manner from the Hamiltonian~3.1! and Eq.~3.3!

]W
]a

5 K ]H

]a L 5
1

2
^x2&5

1

2

Tx

a
>0,

]W
]m

5 K ]H

]mL 52
1

2

^p2&

m2
52

1

2

Tp

m
<0. ~3.36!

It is interesting to note that the signs of]Q and]W in Eqs.
~3.35! and~3.36! are the same as in the classical case, wh
Tx5Tp5T.

D. Density matrix

To investigate the von Neumann entropy~2.4! one needs
the density matrix corresponding to the Wigner functi
~3.2!. Applying the standard relation between the dens
matrix in coordinate representation and the Wigner functi

K x1
u

2
urux2

u

2L 5E dp e2 ipu/\W~p,x!, ~3.37!

one gets the following expression:

^xurux8&5
1

A2p^x2&
expF2

~x1x8!2

8^x2&
2

~x2x8!2

2\2/^p2&
G .

~3.38!

The physical meaning of Eq.~3.38! is clear: The diagona
elements (x5x8) are distributed at the scaleA^x2&, while the
maximally off-diagonal elements (x52x8), which charac-
terize coherence, are distributed with the characteristic s
\/A^p2&. We have to find eigenfunctions and eigenvectors
this density matrix,*dx8^xurux8& f n(x8)5pnf n(x). The so-
lution of this problem involves some tabulated formulas
Hermite polynoms, and results in

pn5
1

w1
1

2

F w2
1

2

w1
1

2

G n

, ~3.39!

f n~x!5c Hn~c x!e2c2x2/2, c5S ^p2&

\2^x2&
D 1/4

, ~3.40!

w5
Dp Dx

\
5A^p2&^x2&

\2
5AmTpTx

\2a
, ~3.41!

whereHn are Hermite polynomials, and it holds thatw> 1
2

due to the Heisenberg uncertainty relation. The result for
von Neumann entropy~2.4! now reads@19#

SvN5~w1 1
2 !ln~w1 1

2 !2~w2 1
2 !ln~w2 1

2 !. ~3.42!

The first terms in its largew expansion read
05611
al

re

y
,

le
f

r

e

SvN5 ln w112
1

24w2
2

1

320w4
2

1

2688w6
. ~3.43!

Notice that the same quantityw governs the Boltzmann en
tropy

SB5Sp1Sx2 ln \5 ln w11. ~3.44!

This appears to coincide with the leading terms of Eq.~3.43!.
It is known to be larger than the von Neumann entropy, a
this is obvious from the sign of the correction terms in E
~3.43!.

If some parameter (a or m) is varied, then the derivative
of SvN with respect to it reads

dSvN5 ln

w1
1

2

w2
1

2

dw. ~3.45!

In other words, the sign of the change inSvN is determined
by the sign of the change inw. This holds as well for the
change inSB , so qualitatively they carry the same inform
tion.

In this context let us stress again that von Neumann
tropy SvN(r) is the unique quantum measure of localizati
and information, whereas the entropiesSp , Sx characterize
localizations of momenta and coordinate separately. Diff
ences betweenSp1Sx and SvN are due to the fact that in
quantum theory momentum and coordinate cannot be m
sured simultaneously; in this senseSp1Sx characterize two
different measurement setups. Nevertheless, for the harm
particle if SvN increases~decreases!, then Sp1Sx increases
~decreases! as well. Notice that the real importance ofSp , Sx
becomes clear when they have to be used to generalize
Clausius inequality. The von Neumann entropySvN cannot
be used for this purpose ifTxÞTp , i.e., whengÞ0.

IV. ENTROPY DECREASE WITH HEAT ABSORPTION

Now we will show that there are erasure process
namely, processes wheredSvN<0, which are accompanied
by an absorption of heat. We noticed already that hea
always absorbed, when the mass is increased@see Eq.
~3.34!#. It will now be shown that there is a mass-increasi
process, wheredSvN<0. Using Eqs.~3.20! and ~3.19! one
has at very low temperatures

]w2

]m
5

]

]mF 1

\2
^x2&^p2&G5

a

p2g2 F212
g2

am
ln

Gm

g

1S 11
g2

amD ln
g2

amG . ~4.1!

This expression is negative in its range of applicability.
An analogous argument can be brought about in

weak-coupling case. Starting from Eqs.~3.13! and ~3.14! or
alternatively from Eqs.~3.16! and~3.17! one derives the fol-
7-6
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lowing expressions for the effective temperatures in
weak-couplingg→0 and low-temperature limit

Tp5
\v0

2
1

\g

pm
ln

G

v0Ae
, Tx5

\v0

2
2

\g

2pm
. ~4.2!

This implies

]w2

]m
52

g

4mAam
ln

G

v0e2
, ~4.3!

which is again negative in its range of applicabilityG@v0.
The general situation at low temperatures is illustrated
Fig. 1, where it is seen thatw monotonically decreases whe
increasing the mass. In the limitm→` it tends to its corre-
sponding Gibbsian value. This can be understood by notic
that the stationary state of a very heavy Brownian part
will not be influenced much by the bath. Indeed, as s
from Eqs.~3.7!–~3.10! the dimensionless parameter that co
trols transition from the weakly damped to the strong
damped regime isj5am/g2. So to increase the mass whi
all other parameters are kept fixed, produces the same e
as to decrease the coupling constantg.

Recall that the corresponding expression for]Q/]m was
positive. This just means that for the variation ofm we have
an interesting case where heat is absorbed when entro
decreasing. This is a counterexample for the general vali
of the Landauer principle.

A. Where classical intuition is correct and where it fails

In the classical case one has an intuitively clear res
Upon increasing the mass of the particle it absorbs h
d”Q5dm]Q/]m.0, while it performs work against the ex
ternal agent,d”W52d”Q,0. In doing so, its entropy in-
creases,dS5d”Q/T.

In the quantum case heat is also released and work is
done on the environment, as follows from Eq.~3.36!. How-
ever, an unusual point appears: The quantum particle
creases its entropy when the mass is increased, s
]SvN /]m,0. To understand this point we notice that at lo

FIG. 1. Dimensionless phase space volumew5DpDx/\
5A^x2&^p2&/\2 vs massm. The other parameters area5g51, G
5500, \51, andT50. It is seen that the volume decays mon
tonically towards its minimal value 1/2, set by the uncertain
relation.
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temperatures of the bath the particle has an appreciable
tropy due to its entanglement with the bath@recall that for
zero temperature the state of the overall system~particle plus
bath! is pure, and the von Neumann entropy of the particle
the adequate measure of its entanglement with the ba#.
When its mass is increased, its state moves towards
Gibbsian limit, and the entropy is reduced just because in
zero-temperature Gibbsian case the entropy is exactly z
This decrease will also occur for low but finite temperatu
of the bath, when entanglement still contributes to the
tropy. So it isquantum entanglementthat necessarily leads t
this counterintuitive result.

Notice that this effect does not imply a violation of th
second law in Thomson’s formulation, which speaks ab
the impossibility to extract work by a cyclic variation of
system parameter@9,10#. Indeed, if after increasing the mas
one decreases it in order to complete the cycle, the exte
agent will do work on the particle, and it will release he
thereby nullifying the overall work and heat~as expected, the
overall work is positive if nonadiabatic variations are cons
ered@9,10#!.

B. Finite temperatures

The above effect]w/]m,0 was analytically illustrated
for T→0. However, it persists as well at finite, but not to
large temperatures. This situation is illustrated in Fig.
Since in the classical case, namely, with high temperatu
one always has]mw5T/(2Ama).0, we expect that the re
gion with ]mw,0 will completely disappear at some finit
critical temperature. This is indeed the case, as Fig. 2 sho

C. Variation of the spring constant

The analogous variation ofa does not lead to such a
unusual result. Here instead of Eq.~4.1! one has

]

]a F 1

\2
^x2&^p2&G5

m

p\g2 F212
g2

am
ln

Gm

g
1 ln

g2

amG<0,

~4.4!

FIG. 2. Dimensionless phase space volumew5DpDx/\
5A^x2&^p2&/\2 vs massm. From top to the bottom:T50.25, 0.20,
0.15, and 0.10. The other parameters are the same as in Fig.a
5g51, G5500, and\51. It is seen that region ofm’s where the
volume decays. This region is completely shrunk forT50.475 53.
For higher temperatures the phase space volume monotonicall
creases withm.
7-7
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but the corresponding expression~3.28! for ]Q/]a is nega-
tive as well. An expression analogous to Eq.~4.1! can be
obtained for the weak-coupling limit. Using Eq.~4.2! one
gets

]w2

]a
52

g

aAam
ln

G

v0
,0. ~4.5!

An important fact should be mentioned here. Although
particle just releases heat during localization, this hea
smaller than expected, since it scales at low temperature
ud”Qu;T2 da @see Eq.~3.32!#. This already invalidates the
Landauer boundud”Qu>TudSu;T da, now only in magni-
tude, and not in sign. In this context the parameters o
statistical system can be distinguished as active and pas
In our concrete case the width of the potentiala is a passive
parameter, in a sense that its variations result in effe
which for any temperature are qualitatively~but not quanti-
tatively! similar to the classical case. In contrast, the act
parameters~in our case it is the massm) invert their behav-
ior at low temperatures.

D. Weak-coupling limit

Here we will especially point out on applicability of ou
result in the weak-coupling limit. First we will make an ob
vious remark that the precise meaning of this limitmust not
be understood in the senseg[0, since the damping constan
g is never explicitly zero in practice, and having put it ze
one will not have at all a possibility to change the entropy
the particle. The weak-coupling limit is understood in
sense that the interaction energy of the particle and the
happened to be sufficiently small compared to the energ
the particle itself@18# ~since the energy of the bath is infinit
there is no need to involve the bath here!. For low tempera-
tures andg→0 the energy of the particle is given by i
zero-point value1

2 \Aa/m. Because the interaction energy
explicitly zero forg[0, it will be enough to chooseg suf-
ficiently small to ensure the above condition of the wea
coupling limit.

Let us now turn to Eq.~3.34! that represents the amou
of heat obtained by the particle when changing the mas
low temperatures. It is seen that in the leading order
quantity is proportional tog. Thus, although the particle is i
the weak-coupling regime, it still gets a positive~though
small! amount of heat during the enhancement of its mas

E. High temperatures

Finally we wish to show in more detail that the Landau
principle does hold in our model for sufficiently high tem
peratures. This follows from the fact that in this lim
Tp ,Tx→T as seen from Eqs.~3.21! and ~3.22!. A more
elaborated discussion goes as follows. One has the follow
exact relation:

d”Q2T dSvN5~Tx2T!dSx1~Tp2T!dSp

2Td~SvN2Sx2Sp!. ~4.6!
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One applies here Eqs.~3.21!, ~3.22!, and ~3.43! to get for
variation ofm,

]Q
]m

2T
]SvN

]m
52

\2g2

24m3T
1O~\3b2!. ~4.7!

The deviation from the Clausius equality, and thus from
Landauer principle, thus disappears for high temperature
for g→0 and/or\→0, as it should be. It is seen as well th
the correction term has a sign opposite to the main eff
When increasing its mass, the particle absorbs heat, bu
small correction in right-hand side of Eq.~4.7!, which ap-
pears due to the common influence of the quantum effe
and interaction with the bath, tends to make the eff
smaller. This is consistent with previous observation tha
low T the entropy decreases.

V. ON A POPULAR DERIVATION
OF THE LANDAUER BOUND

Let us discuss in a more general perspective the obta
result on the violation of the Landauer principle. For th
purpose we will analyze one of the simplest derivations
this principle@4–6#, in order to understand what essentia
goes into it and where its argument may be inapplicable

The popular derivations go as follows. Erasure is acco
panied by reduction of entropy of the information-carryin
system. Since entropy of the overall system, which is
carrier plus bath, cannot decrease, one quickly concludes
entropy of the bath should increase, thereby producing h
This argument seems to be rather solid, because, instea
involving any derivation, it just directly refers to the secon
law, namely, to the Clausius inequality. However, there
three assumptionsin that inequality, which are rather restric
tive. They immediately pertain to the Landauer inequality

The first assumption is that the total entropyS of the
overall system is sum of partial entropies of system and b
S5SS1SB . This is obvious in classical systems, but may
invalid in quantum systems. The second is quick thermali
tion in the bath, implyingd”QB5T dSB . The third assump-
tion is smallness of the interaction energyd”QI , allowing to
conclude from energy conservationd”QS1d”QB1d”QI50
implies thatdSB5d”QB /T52d”QS /T. With these assump
tions it now follows immediately that 0<dS5dSS1dSB
5dSS2d”QS /T.

These asumptions are strictly valid only for nonintera
ing information carrier and its bath. However, without inte
action there is no reason to speak about erasure. Under
eral additional conditions@18# these assumptions may b
valid as certainapproximationsin the weak-coupling case
Their validity is especially endangered in the quantum
gime where the complete entropy, which is the subject of
second law applied to the complete system, is not equa
the sum of the separate entropies if there occurs quan
entanglement. So the above simple derivation is actually
stricted, as was noted already in the context of rather dif
ent physical arguments@26,27#.

The general validity of the Landauer principle must
completely put on the validity of the Clausius inequality.
7-8
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was our main message that quantum entanglement limits
validity of the Clausius inequality and, consequently, of t
Landauer bound. It can be checked explicitly that in th
regime the above assumptions are invalid: the interac
energy contributes to the total energy, and the total entrop
not the sum of two partial entropies@9,10#. Recently viola-
tions of other formulations of the second law were notic
and investigated in Refs.@28,29#.

VI. CONCLUSION

The Landauer principle requires dissipation~release! of
TudSu units of energy as a consequence of erasure ofudSu
units of information. This was believed to be the onlyfun-
damentalenergy cost of computational processes@4–6,8#.
Though, in practice, computers dissipate much more ene
the Landauer principle was considered to put a gen
physical bound to which every computational device int
acting with its thermal environment must satisfy. Indeed,
several physical situations the Landauer principle can
proved explicitly@8#.

The main purpose of the present paper was to provid
counterexample of this principle, and thus to question
v
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y
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univeral validity. In the reported case all general requi
ments on the information carrier and its interaction with t
bath are met. The only new point of our approach is that
were interested in sufficiently low temperatures, where qu
tum effects are relevant. The Landauer principle appeare
be violated by these effects~in particular, by entanglement!.
At high temperatures we reproduce its validity. In fact,
this limit our model is equivalent to that considered in R
@8#, where the classical Landauer principle was derived i
quite general ground.

Recently the Landauer bound attracted a serious atten
by workers in the field of applied information science@30#.
There is a definite belief that this bound can be approac
by further miniaturization of computational devices. It
hoped that the present paper will help to understand lim
tions of the Landauer principle itself, which may lead
unexpected mechanisms for computing in the quantum
gime.
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